ООО «Научно-производственное предприятие Марс-Энерго»

«УТВЕРЖДАЮ»

Директор ООО «НПП Марс-Энерго»

Гиниятуллин И.А.

20/4 г.

Методика измерений падения напряжения во вторичной цепи измерительного трансформатора напряжения прибором «Энерготестер ПКЭ-А» в условиях эксплуатации

Согласовано

Заместитель директора ФБУТ

«ВНИИМ им. Д.И Менделесва»

Руководитель лаборатории

Электроэнергетики ВНИИМ

Е. З. Шапиро

20 /45 «17» 03

МИ аттестована ФГУП «ВНИИМ им. Д.И. Менделеева» 19 магта 2014 г.

Свидетельство об аттестации МИ № 502/2203 -(01.00250-200р)-2014

Санкт-Петербург

2014

РАЗРАБОТАНО:

ООО «НПП Марс-Энерго»

исполнители:

Заместитель директора

Ведущий инженер

С.Р. Сергеев

Ю.В. Ошарин

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1. ТРЕБОВАНИЯ К ПОГРЕШНОСТИ ИЗМЕРЕНИЙ
2. СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА
3. МЕТОДЫ ИЗМЕРЕНИЙ
4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ
5. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ
6. УСЛОВИЯ ИЗМЕРЕНИЙ
7. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ
8. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ
9. ОБРАБОТКА (ВЫЧИСЛЕНИЕ) РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ
Приложение 1

ВВЕДЕНИЕ

Настоящий документ устанавливает методику измерений (далее — МИ) параметров вторичных цепей измерительных трансформаторов напряжения (ТН), выпускаемых по ГОСТ 1983-2001 [1], в условиях эксплуатации и при поверке. МИ предназначена для персонала, проводящего обследование вторичных цепей ТН.

Измеряемые параметры:

- U₁ среднеарифметическое действующих значений напряжения на выходных клеммах основной вторичной обмотки ТН;
- U_2 среднеарифметическое действующих значений напряжения на клеммной колодке счетчика электроэнергии;
- падение напряжения (ΔU) в линиях соединения счетчика электроэнергии с измерительным трансформатором напряжения:

$$\Delta U = U_1 - U_2 \tag{1}$$

- потери напряжения $\delta_{\scriptscriptstyle J}$, возникающие из-за падения напряжения во вторичных цепях измерительных TH:

$$\delta_{\pi} = \Delta U/U = [(U_1 - U_2)/U_H] \cdot 100\%,$$
 (2)

где U_н – номинальное напряжение измерительной обмотки TH.

Для справки. ПУЭ п. 1.5.19:

«Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5% при питании от трансформаторов напряжения класса точности 1,0».

1. ТРЕБОВАНИЯ К ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

- 1.1 Число измерений равно пяти (n=5)
- 1.2 Результат измерений среднеарифметическое значение:

$$\overline{\delta}_{n} = \frac{1}{n} \sum_{i=1}^{n} \delta_{ni} \tag{3}$$

1.3 среднеквадратическое отклонение результата измерений:

$$S_{\delta} = \sqrt{\frac{1}{(n-1) \cdot n} \cdot \sum_{i=1}^{n} (\delta_{ni} - \overline{\delta}_{n})^{2}}$$
 (4)

Стандартная неопределенность по типу A, также определяемая по формуле (4), должна быть не более $0{,}005\%$ для трансформаторов напряжения класса точности $0{,}2$ и менее точных;

2. СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА

2.1. При выполнении измерений применяют средства измерений (далее — СИ), указанные в таблице 2.1.

Таблица 2.1. Средства измерений.

Наименование средства измерений	Метрологические	Наименование		
	используемые	измеряемой величины		
	Диапазон измерений	Диапазон измерений погрешность		
		измерений		
1 Прибор для измерений				
электроэнергетических величин и	(0,011,5)U _н	относительная	Действующее	
показателей качества электроэнергии	U _H : 10; 60; 240 B	$\pm [0,1+0,01(U_{H}/U-1)]\%$	значение напряжения	
«Энерготестер ПКЭ-А-А» (2 шт.)	(фазное)		переменного тока (U)	
	При синхронизации с UTC.	абсолютная ±0,005 с	Текущее время	
	При отсутствии синхронизации с UTC.	абсолютная ±0,5 с/сут	Ход часов	
	При температуре от -20 до 55 °C	0,0006%/K	Дополнительная погрешность Прибора $\delta_{\text{tдоп}}$ при отклонении температуры окружающего воздуха от н.у. (23 \pm 5)°C	
2 термометр*	(-20+50)°C	±1 °C	температура	
			окружающего воздуха	

^{* -} при измерениях в ЗРУ не требуется

2.2. СИ должны иметь действующие свидетельства о поверке.

3. МЕТОДЫ ИЗМЕРЕНИЙ

- 3.1. Определение значений падения напряжения ΔU выполняется путём одновременного измерения двумя приборами «Энерготестер ПКЭ-А» напряжения на вторичной обмотке TH и напряжения на входе электросчётчика.
- 3.2. Определение значений потерь δ_{n} , возникающих из-за падения напряжения во вторичных цепях измерительных ТН, выполняется путём последующих вычислений.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При выполнении измерений соблюдают требования безопасности в соответствии с ГОСТ 12.3.019-80 [8], ГОСТ 12.2.007.0-75 [9], «Правилами технической эксплуатации электрических станций и сетей РФ» [10], «Правилами технической эксплуатации электроустановок потребителей» [11], «Межотраслевыми Правилами по охране труда при эксплуатации электроустановок. РД-153-34.0-03.150-00 (ПОТ РМ-016-2001)» [13].
- 4.2 По безопасности ТН должны соответствовать Требованиям ГОСТ 12.2.007.3-75 [16] и ГОСТ 12.2.007.0-75 [9]. Вторичные обмотки ТН должны быть заземлены в соответствии с НТД.
- 4.3 Средства измерений должны удовлетворять требованиям безопасности по ГОСТ 22261-94 [17] и ГОСТ Р 51350 –99 [18].

5. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРОВ

- 5.1. К выполнению измерений допускаются лица, подготовленные в соответствии с «Правилами технической эксплуатации электрических станций и сетей РФ», «Правилами эксплуатации электроустановок потребителей», «Межотраслевыми Правилами по охране труда (ТБ) при эксплуатации электроустановок», имеющие квалификационную группу не ниже III до и выше 1000 В и обученные проведению измерений при учете электроэнергии.
- 5.2. К обработке результатов измерений допускаются лица с образованием не ниже среднего специального.

6. УСЛОВИЯ ИЗМЕРЕНИЙ

6.1. При выполнении измерений соблюдают условия, приведенные в таблице 6.1.

Таблица 6.1

Наименование	Наименование влияющих	Номинальные значения	Предельные отклонения
измеряемой величины	величин		
Действующее значение	Температура	По паспортам СИ	По паспортам СИ
напряжения	окружающего воздуха,		
переменного тока	°C		
	Относительная		
	влажность воздуха, %		
	Атмосферное		
	давление, мм рт.ст.		
	Напряжение питания, В		

- 6.2. При выполнении измерений разность температур окружающего воздуха у двух приборов, участвующих в измерениях: не более 20°C.
- 6.3. При выполнении измерений синхронизация часов с Международной шкалой координированного времени (UTC) должна производится с периодом не более 2 час.

7. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

- 7.1 Внесите в протокол (форма протокола приведена в обязательном приложении 1) паспортные данные измерительного ТН и условия проведения измерений. Работы производятся с помощью двух приборов «Энерготестер ПКЭ-А» (далее П1 и П2). Установите средства измерений и подготовьте к работе в соответствии с инструкциями по эксплуатации.
- 7.2 Включите питание приборов. Выполните синхронизацию внутренних часов двух приборов П1 и П2 с Международной шкалой координированного времени (UTC). Для этого подключите отдельную антенну GPS к каждому прибору (антенны должны находится вне помещения на открытой местности), затем в меню «настройки» «дата и время» «автоматическая коррекция» выберите пункт «включена». Появление на дисплеях приборов сообщения о связи с GPS (значок «спутник») говорит о том, что синхронизация выполнена.
- 7.3 Подключите приборы П1 и П2 в соответствии со схемой, представленной на рисунке 7.1, (показано для однофазного ТН).

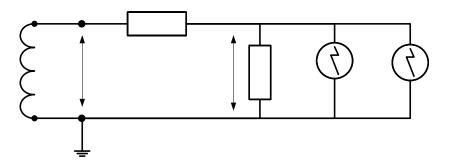


Рисунок 7.1. Схема подключения приборов для подготовки синхронизированных измерений. Z - импеданс кабеля линии; СЧ - счетчик; П1, П2 – приборы «Энерготестер ПКЭ-А».

7.4 В приборах П1 и П2 установите схему подключения, соответствующую схеме вторичных цепей ТН. Определите соответствие маркировки фаз измеряемой трехфазной цепи правильному чередованию фаз с помощью прибора (пункт меню прибора «Измерения-Углы»). Чередование фаз входных сигналов должно совпадать с маркировкой соответствующих измерительных каналов напряжения прибора.

- 7.5 В приборах, в режиме «Измерение» «Синхронизированные измерения» установите в каждом приборе:
 - дату и время (дискретность 10 мин.) начала усреднения в пункте «Старт»,
 - «Длительность» 150 периодов (3 c).

Для запуска измерений необходимо выбрать пункт «Запуск измерений» и нажать клавишу `ENT`, при этом появится сообщение «Ожидание» и пункт «Отмена запуска». После достижения заданного времени начала усреднения сообщение «Ожидание» сменится сообщением «Измерение».

- 7.6 По истечении 3 с сообщение «Измерение» сменится на сообщение «Готово», и обновятся показания «Um». Внесите в протокол (приложение 1) результаты измерений приборами $\Pi 1$ и $\Pi 2$ значений напряжения N_{1Km} , и N_{2Km} соответственно, где m обозначение фазы (a, b, c или a-b, b-c, c-a). Закончите измерения на обоих приборах и отключите $\Pi 2$ от клемм электросчетчика (или TH).
- 7.7 Операции по п. 7.3 7.6 могут выполняться путем измерения напряжения приборами П1 и П2 либо на зажимах вторичных обмоток ТН (U_1), либо на зажимах напряжения электросчетчика ($U_{cq}=U_2$). Прибор «Энерготестер ПКЭ-А» позволяет производить измерение напряжений в трех фазах одновременно. При трехпроводной схеме включения вместо фазных измеряются междуфазные напряжения.
- 7.8 Перенесите и подключите П1 к клеммам вторичных обмоток ТН (или П2 к клеммам электросчётчика). При переносе питание прибора может выполняться от встроенной аккумуляторной батареи. В случае отключения питания внутренние часы прибора не выключаются и сохраняют параметры синхронизации с UTC.
- 7.9 Подключите приборы в соответствии со схемой, приведенной на рисунке 7.2. Убедитесь в работоспособности собранной схемы, проконтролировав текущие значения напряжения на обоих приборах. Если с момента выполнения синхронизации часов по п.п. 7.2 прошло более 2 часов, синхронизацию следует выполнить снова у каждого прибора по п.п. 7.2.



Рисунок 7.2. Схема измерений падения напряжений во вторичных цепях (показано для одной фазы). Z - импеданс кабеля линии; СЧ - счетчик; П1, П2 – приборы «Энерготестер ПКЭ-А».

8. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

- 8.1. В приборах, в режиме «Измерение» «Синхронизированные измерения» установите в каждом приборе:
 - дату и время (дискретность 10 мин.) начала усреднения в пункте «Старт»,
 - «Длительность» 150 периодов (3 c).

Для запуска измерений необходимо выбрать пункт «Запуск измерений» и нажать клавишу `ENT`, при этом появится сообщение «Ожидание» и пункт «Отмена запуска». После достижения заданного времени начала усреднения сообщение «Ожидание» сменится сообщением «Измерение».

- 8.2. По истечении 3 с сообщение «Измерение» сменится на сообщение «Готово», и обновятся показания « $U_{\varphi\varphi}$ ».
- 8.3. Повторите измерения по п.п. 8.1 8.2 всего 5 раз. Результаты каждого измерения сохраняются в приборах и доступны для просмотра на дисплее, включая время и длительность. Глубина хранения в энергонезависимой памяти 512 измерений (далее автоматически стираются самые старые результаты). Внесите в протокол (приложение 1) результаты измерений приборами П1 и П2 значений напряжения N_{1mi} и N_{2mi} , соответственно, где m обозначение фазы, i номер измерения (всего не менее 5).
 - 8.4. Закончите измерения на обоих приборах и отключите их от цепей.
 - 8.5. Заполните протокол, форма которого представлена в приложении 1.

9. ОБРАБОТКА (ВЫЧИСЛЕНИЕ) РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

9.1. Рассчитайте для каждой m-й фазы поправку на систематическую разность показаний П1 и П2 при одинаковом значении напряжения, равном измеренному напряжению U, на их одноименных входах по формуле

$$\Delta \kappa_{\rm m} = N_{1\rm Km} - N_{2\rm Km}. \tag{9.1}$$

где N_{1Km} и N_{2Km} - показания $\Pi 1$ и $\Pi 2$ при определении поправки (в Вольтах); m – обозначение фазы (a, b, c).

9.2. Рассчитайте для каждой т-й фазы относительное значение поправки по формуле:

$$\Delta_{\Delta m} = [(N_{1Km} - N_{2Km})/U_{H}] \cdot 100\%$$
(9.2)

где N_{1Km} и N_{2Km} - показания $\Pi 1$ и $\Pi 2$ в Вольтах;

m – обозначение фазы (a, b, c);

U_н – номинальное напряжение измерительной обмотки ТН.

Если поправка Δ_{Λ} не превышает 0,01 %, то она принимается равной нулю.

9.3. Рассчитайте для каждой m-й фазы среднеарифметическое относительное значение

падения напряжения во вторичных цепях измерительных ТН (потерю напряжения), по формуле (3), $\overline{\delta}_{\bar{\varepsilon}}$

9.4. Рассчитайте для каждой m-й фазы потерю напряжения, по формуле (с учетом знака поправки $\Delta_{\Delta m}$):

$$\delta_{\pi \, m} = \, \overline{\delta}_{\bar{e}} - \Delta_{\Delta m} \tag{9.3}$$

где m – обозначение фазы (a, b, c).

9.5. Рассчитайте для каждой m-й фазы Стандартную неопределенность измерений по типу A по формуле (4), $S_{\delta m}$, при количестве измерений n=5.

Результаты расчетов занести в протокол.

	Прото	кол испь	ітаний	№		
	От «»		Γ.	(на	листах)	
1 Заказчик исп	ытаний					
Наименование:						
Адрес:						
1 Цель испь	ІТ аний					
Определение по	этерь напряжения	в линия:	х соеди	нения с	четчика	электроэнергии с ТН
рабочих услови	_					
2 Идентифи	- кационные данн	ые пункт	га конт	роля		
-				_		
	ение) в схеме:					
	ные ТН и электро					
Наименование	ТН фаза А	ТН фаза	В	ТН фаз	ва С	электросчетчик
ТИП						
зав. №						
год выпуска						
дата поверки						
класс точности						
номинальное						
напряжение,						
$U_{\scriptscriptstyle H}$, B						
3 Сроки про	ведения испыта	ний				
c ""	<u>20</u> г. по ""_		<u>20</u> Γ.			
4 Перечень	средств измерені	ий (СИ).				
Наименование СИ	Тип СИ			ой номер ыпуска		етельства о поверке и дата поверки
Прибор 1	«Энерготестер I	ТКЭ-А»				
Прибор 2	«Энерготестер I	ТКЭ-А»				

Схема соединения обмоток ТН и электросчетчика приведена в приложении А к настоящему протоколу.

5 Условия проведения измерений (за весь период измерений)

Обозначение	Температура, °С	Атмосферное	Относительная	Напряжение
Прибора		давление, мм рт.ст.	влажность, %	питания, В
П1				
П2				

6 Результаты измерений и вычислений

Таблица 6.1. Определение поправки.

Наименование	фаза А (А-В)	фаза В (В-С)	фаза С (С-А)
N _{1Km} (B)			
$N_{2Km}\left(\mathbf{B}\right)$			
Поправка $\Delta \kappa_{m}$ = N_{1Km} - N_{2Km}			
(B)			
$\Delta_{\Delta} = [(N_{1K} - N_{2K})/U_{H}] \cdot 100, \%$			

Поправку Δ_{Δ} учитывать со знаком! Поправку Δ_{Δ} принять равной нулю, если она не превышает 0,01%.

Таблица 6.2. Результаты измерений

	фаза А (А-В)			фаза В (В-С)			фаза С (С-А)		
i	Напряжение на ТН N _{1mi} (В)	Напряже ние на счётчике $N_{2mi}\left(B\right)$	Потеря напряж. $\delta_{\pi mi} \%$	Напряже ние на ТН N _{1mi} (В)	Напряже ние на счётчике $N_{2mi}\left(\mathbf{B}\right)$	Потеря напряж. $\delta_{\pi mi} \%$	Напряже ние на ТН N _{1mi} (В)	Напряже ние на счётчике $N_{2mi}\left(B\right)$	Потеря напряж. $\delta_{\pi mi} \%$
1									
2									
3									
4									
5									
	Потери напряжения:	$ar{\delta}^{=}_{\ddot{e}\grave{a}}^{=}$	%	Средне - арифм.	$\bar{\delta}_{\ddot{e}b}^{=}$	%	Средне - арифм.	$\bar{\delta}_{\ddot{e}c}^{=}$	%
	С поправкой	δ_{na} =	%		δ_{na} =	%		δ_{na} =	%
	СКО:	$S_{\delta a}=$			$S_{\delta a}=$			$S_{\delta a}=$	

где СКО - Стандартная неопределенность измерений по типу A при числе измерений n=5 для каждой фазы.

8 Заключение

Приложения. А, Схема соединения обмоток ТН.	
Инженер-испытатель	
Техник-испытатель	 Дата

Значение потерь напряжения - соответствует (не соответствует) требованиям НТД.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

FEDERAL STATE
UNITARY ENTERPRISE
"D.I.MENDELEYEV INSTITUTE
FOR METROLOGY"
(VNIIM)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ "ВНИИМ им.Д.И.МЕНДЕЛЕЕВА"

19, Moskovsky pr., St. Petersburg, 190005, Russia

Fax: 7 (812) 713-01-14 Phone: 7 (812) 251-76-01 e-mail: info@vniim.ru http:// www.vniim.ru 190005, Россия, г. Санкт-Петербург Московский пр., 19

Факс: 7 (812) 713-01-14 Телефон: 7 (812) 251-76-01 e-mail: info@vniim.ru, http://www.vniim.ru

СВИДЕТЕЛЬСТВО CERTIFICATE

об аттестации методики измерений № 502/2203-(01.00250-2008)-2014

Методика измерений падения напряжения во вторичной цепи измерительного трансформатора напряжения прибором "Энерготестер ПКЭ-А" в условиях эксплуатации

разработанная ООО «НПП Марс-Энерго»,

Россия, 190031, г. Санкт-Петербург, наб.р.Фонтанки, д.113, литер А.

и регламентированная в документе "Методика измерений падения напряжения во вторичной цепи измерительного трансформатора напряжения прибором "Энерготестер ПКЭ-А" в условиях эксплуатации", утвержденном в 2014 г, 13 листов.

аттестована в соответствии с ГОСТ Р 8.563

Аттестация осуществлена по результатам метрологической экспертизы материалов по разработке методики измерений.

В результате аттестации методики методика измерений соответствует метрологическим требованиям.

измерений установлено, что предъявляемым к ней

Заместитель директора М.П.

Е.П.Кривцов

"19" марта 2014 г.